

Hall effect Open-loop current sensor **SEH4** series

Product description

Features

- Based on Hall effect measurement principle, open loop circuit mode.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Comply with UL94-V0 flame retardant rating.

Performance

- Can measure DC, AC, pulse, and various irregular waveforms under isolated conditions.
- Wide measurement range, fast response speed, low zero drift, low temperature drift, high accuracy and good linearity.
- Dynamic performance (di/dt and response time) is optimal when the busbar is fully filled with primary perforations.
- Strong ability to resist external electromagnetic interference (BCI, EFT, CS, CE, ESD, dv/dt, etc.).

Application:

It can be widely used in inverters, UPS, photovoltaic inverters, electric vehicle drives, highfrequency power supplies, inverter welding machines and other products.

Implementation standards

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

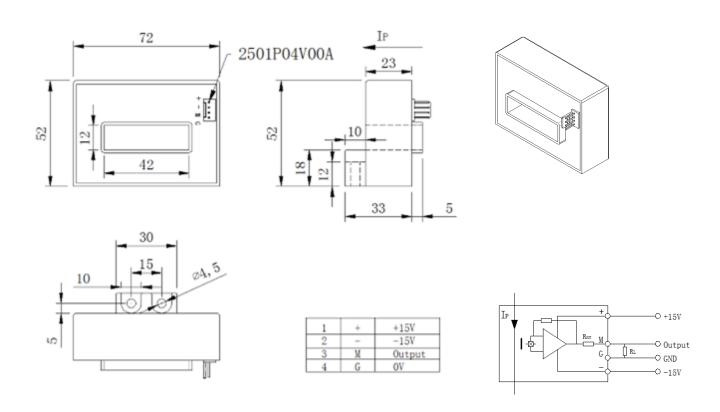
Certification

Technical Parameters

Model	SEH4							
Parameters (25°C)	300A	400A	500A	600A	800A	1000A	1500A	2000A
Primary Current I _{PN}	300A	400A	500A	600A	800A	1000A	1500A	2000A
Primary Current Max. Peak Value I _{PM}	±900A	±1200A	±1500A	±1800A	±2400A	±3000A	±3500A	±3500A
Output voltage $V_{out} @ \pm I_{PN}$, $R_L = 10 K\Omega$	±4V±1%							

Electrical Data

Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1, Remark 2)	±11	±15	±18	V_{DC}
Current consumption Ic	-	±15	±20	mA
Withstand resistance R _{INS} @500V DC	1000	-	-	МΩ
Output voltage Vout $@I_{PN}$, $R_L=10K\Omega$, $T_A=25^{\circ}C$	3.960	4.000	4.040	V
Output internal resistance R _{OUT}	•	102	-	Ω
Load Resistance R _L (Remark 3)	1	10	-	ΚΩ
Accuracy X @I _{PN} ,T _A = 25°C	-	±1	-	%
Linearity ε _L @R _L =10KΩ,T _A = 25°C	-	±0.5	-	%I _{PN}
Offset voltage V _{OE} @T _A = 25°C	-	±10	±20	mV
Hysteresis voltage V _{OM} @ I _{PN} →0	-	±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±0.5	±1	mV/°C
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/°C
Response time t _D @ 0→I _{PN}	-	3	5	us
Ambient operating temperature T _A	-40	25	125	°C
Ambient storage temperature T _s	-40	25	125	°C
Withstand voltage V _D @50Hz,60s,0.1mA		3000		V _{AC}
Weight m		210		g


Remarks:

- 1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.
- 2. When $\pm 12V \le VCC \le \pm 15V$, will reduce the measurement range.

з.
$$V_{OUT} = 4.04 * \frac{R_L}{102 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$

4.di/dt>50A/uS

Dimensions (in mm)

Notes:

1. Size error: ±1mm;

2. Primary aperture: 41.6*12mm;3. Fastening hole: ф4.5mm*2;

4. SEH4 output terminal: 2501P04V00A;

5. The IP indication direction is the positive direction of the current;

6. The temperature of the primary conductor shall not exceed 105°C;

7. Incorrect wiring may cause damage to the sensor.